本文目录一览:
- 1、勾股定理怎么算?
- 2、勾股定理怎样计算?
- 3、勾股定理怎么计算?
勾股定理怎么算?
01
勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。
勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别a是和b,斜边长度是c,那么可以用数学语言表达:a²+ b² =c² 。勾股定理是余弦定理中的一个特例。
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
外国
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。
公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。
公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。
1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。
勾股定理怎样计算?
勾股定理是指两个数平方的和等第三个数的平方,用公式表示就是A²+B²=C²,这里只需要知道任意两个数即可求得第三个数。
例如知道A=3,B=4,即可算出来C=5
同样知道C=5,A=3,即可算出来B=4
勾股定理怎么计算?
勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.
A²+B²=C²
C=√(A²+B²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)
3²+4²=5²
5=√(3²+4²)=√5²=5
扩展资料
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
参考资料勾股定理_百度百科
End